STEP I - Integration 2

Q1, (STEP I, 2014, Q2)

- (i) Show that $\int \ln(2-x) dx = -(2-x) \ln(2-x) + (2-x) + c$, where x < 2.
- (ii) Sketch the curve A given by $y = \ln |x^2 4|$.
- (iii) Show that the area of the finite region enclosed by the positive x-axis, the y-axis and the curve A is $4\ln(2+\sqrt{3})-2\sqrt{3}$.
- (iv) The curve B is given by $y = |\ln |x^2 4||$. Find the area between the curve B and the x-axis with |x| < 2.

[Note: you may assume that $t \ln t \to 0$ as $t \to 0$.]

Q2, (STEP I, 2015, Q5)

(i) The function f is defined, for x > 0, by

$$f(x) = \int_{1}^{3} (t-1)^{x-1} dt.$$

By evaluating the integral, sketch the curve y = f(x).

(ii) The function g is defined, for $-\infty < x < \infty$, by

$$g(x) = \int_{-1}^{1} \frac{1}{\sqrt{1 - 2xt + x^2}} dt$$
.

By evaluating the integral, sketch the curve y = g(x).

Q3, (STEP I, 2017, Q1)

(i) Use the substitution $u = x \sin x + \cos x$ to find

$$\int \frac{x}{x \tan x + 1} \, \mathrm{d}x.$$

Find by means of a similar substitution, or otherwise,

$$\int \frac{x}{x \cot x - 1} \, \mathrm{d}x.$$

(ii) Use a substitution to find

$$\int \frac{x \sec^2 x \tan x}{x \sec^2 x - \tan x} \, \mathrm{d}x$$

and

$$\int \frac{x \sin x \cos x}{(x - \sin x \cos x)^2} \, \mathrm{d}x.$$

Q4, (STEP I, 2018, Q8)

The functions s and c satisfy s(0) = 0, c(0) = 1 and

$$s'(x) = c(x)^2,$$

$$c'(x) = -s(x)^2.$$

You may assume that s and c are uniquely defined by these conditions.

- (i) Show that $s(x)^3 + c(x)^3$ is constant, and deduce that $s(x)^3 + c(x)^3 = 1$.
- (ii) Show that

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(\mathrm{s}(x)\mathrm{c}(x)\right) = 2\mathrm{c}(x)^3 - 1$$

and find (and simplify) an expression in terms of c(x) for $\frac{d}{dx} \left(\frac{s(x)}{c(x)} \right)$.

(iii) Find the integrals

$$\int s(x)^2 dx$$
 and $\int s(x)^5 dx$.

(iv) Given that s has an inverse function, s^{-1} , use the substitution u = s(x) to show that

$$\int \frac{1}{(1-u^3)^{\frac{2}{3}}} \, \mathrm{d}u = s^{-1}(u) + \text{constant}.$$

(v) Find, in terms of u, the integrals

$$\int \frac{1}{(1-u^3)^{\frac{4}{3}}} du$$
 and $\int (1-u^3)^{\frac{1}{3}} du$.